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1. THE COSMOLOGICAL PARAMETERS

Updated September 2011, by O. Lahav (University College London)
and A.R. Liddle (University of Sussex).

1.1. Parametrizing the Universe

Rapid advances in observational cosmology have led to the
establishment of a precision cosmological model, with many of the
key cosmological parameters determined to one or two significant
figure accuracy. Particularly prominent are measurements of cosmic
microwave background (CMB) anisotropies, led by the seven-year
results from the Wilkinson Microwave Anisotropy Probe (WMAP)
[1–3]. However the most accurate model of the Universe requires
consideration of a wide range of different types of observation, with
complementary probes providing consistency checks, lifting parameter
degeneracies, and enabling the strongest constraints to be placed.

The term ‘cosmological parameters’ is forever increasing in its scope,
and nowadays includes the parametrization of some functions, as well
as simple numbers describing properties of the Universe. The original
usage referred to the parameters describing the global dynamics of
the Universe, such as its expansion rate and curvature. Also now
of great interest is how the matter budget of the Universe is built
up from its constituents: baryons, photons, neutrinos, dark matter,
and dark energy. We need to describe the nature of perturbations
in the Universe, through global statistical descriptors such as the
matter and radiation power spectra. There may also be parameters
describing the physical state of the Universe, such as the ionization
fraction as a function of time during the era since recombination.
Typical comparisons of cosmological models with observational data
now feature between five and ten parameters.

1.1.1. The global description of the Universe:

Ordinarily, the Universe is taken to be a perturbed Robertson–
Walker space-time with dynamics governed by Einstein’s equations.
This is described in detail by Olive and Peacock in this volume. Using
the density parameters Ωi for the various matter species and ΩΛ for
the cosmological constant, the Friedmann equation can be written

∑

i

Ωi + ΩΛ − 1 =
k

R2H2
, (1.1)

where the sum is over all the different species of material in the
Universe. This equation applies at any epoch, but later in this article
we will use the symbols Ωi and ΩΛ to refer to the present values.
A typical collection would be baryons, photons, neutrinos, and dark
matter (given charge neutrality, the electron density is guaranteed to
be too small to be worth considering separately and is included with
the baryons).

The complete present state of the homogeneous Universe can be
described by giving the current values of all the density parameters and
of the Hubble parameter h. These also allow us to track the history of
the Universe back in time, at least until an epoch where interactions
allow interchanges between the densities of the different species, which
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2 1. The Cosmological Parameters

is believed to have last happened at neutrino decoupling, shortly
before Big Bang Nucleosynthesis (BBN). To probe further back into
the Universe’s history requires assumptions about particle interactions,
and perhaps about the nature of physical laws themselves.

1.1.2. Neutrinos:

The standard neutrino sector has three flavors. For neutrinos of
mass in the range 5 × 10−4 eV to 1 MeV, the density parameter in
neutrinos is predicted to be

Ωνh2 =

∑

mν

93 eV
, (1.2)

where the sum is over all families with mass in that range (higher
masses need a more sophisticated calculation). We use units with c = 1
throughout. Results on atmospheric and Solar neutrino oscillations [4]
imply non-zero mass-squared differences between the three neutrino
flavors. These oscillation experiments cannot tell us the absolute
neutrino masses, but within the simple assumption of a mass hierarchy
suggest a lower limit of approximately 0.05 eV on the sum of the
neutrino masses.

For a total mass as small as 0.1 eV, this could have a potentially
observable effect on the formation of structure, as neutrino free-
streaming damps the growth of perturbations. Present cosmological
observations have shown no convincing evidence of any effects
from either neutrino masses or an otherwise non-standard neutrino
sector, and impose quite stringent limits, which we summarize in
Section 1.3.4. Accordingly, the usual assumption is that the masses
are too small to have a significant cosmological impact at present data
accuracy. However, we note that the inclusion of neutrino mass as
a free parameter can affect the derived values of other cosmological
parameters.

The cosmological effect of neutrinos can also be modified if the
neutrinos have decay channels, or if there is a large asymmetry in the
lepton sector manifested as a different number density of neutrinos
versus anti-neutrinos. This latter effect would need to be of order
unity to be significant (rather than the 10−9 seen in the baryon
sector), which may be in conflict with nucleosynthesis [5].

1.1.3. Inflation and perturbations:

A complete model of the Universe should include a description of
deviations from homogeneity, at least in a statistical way. Indeed,
some of the most powerful probes of the parameters described above
come from the evolution of perturbations, so their study is naturally
intertwined in the determination of cosmological parameters.

There are many different notations used to describe the perturba-
tions, both in terms of the quantity used to describe the perturbations
and the definition of the statistical measure. We use the dimensionless
power spectrum ∆2 as defined in Olive and Peacock (also denoted
P in some of the literature). If the perturbations obey Gaussian
statistics, the power spectrum provides a complete description of their
properties.

From a theoretical perspective, a useful quantity to describe the
perturbations is the curvature perturbation R, which measures the
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1. The Cosmological Parameters 3

spatial curvature of a comoving slicing of the space-time. A case
of particular interest is the Harrison–Zel’dovich spectrum, which
corresponds to a constant ∆2

R. More generally, one can approximate
the spectrum by a power-law, writing

∆2
R (k) = ∆2

R (k∗)

[

k

k∗

]n−1

, (1.3)

where n is known as the spectral index, always defined so that
n = 1 for the Harrison–Zel’dovich spectrum, and k∗ is an arbitrarily
chosen scale. The initial spectrum, defined at some early epoch of
the Universe’s history, is usually taken to have a simple form such as
this power-law, and we will see that observations require n close to
one, which corresponds to the perturbations in the curvature being
independent of scale. Subsequent evolution will modify the spectrum
from its initial form.

The simplest viable mechanism for generating the observed
perturbations is the inflationary cosmology, which posits a period
of accelerated expansion in the Universe’s early stages [6,7]. It is
a useful working hypothesis that this is the sole mechanism for
generating perturbations, and it may further be assumed to be the
simplest class of inflationary model, where the dynamics are equivalent
to that of a single scalar field φ slowly rolling on a potential V (φ). One
may seek to verify that this simple picture can match observations
and to determine the properties of V (φ) from the observational
data. Alternatively, more complicated models, perhaps motivated
by contemporary fundamental physics ideas, may be tested on a
model-by-model basis.

Inflation generates perturbations through the amplification of
quantum fluctuations, which are stretched to astrophysical scales
by the rapid expansion. The simplest models generate two types,
density perturbations which come from fluctuations in the scalar field
and its corresponding scalar metric perturbation, and gravitational
waves which are tensor metric fluctuations. The former experience
gravitational instability and lead to structure formation, while
the latter can influence the CMB anisotropies. Defining slow-roll
parameters, with primes indicating derivatives with respect to the
scalar field, as

ǫ =
m2

Pl

16π

(

V ′

V

)2

; η =
m2

Pl

8π

V ′′

V
, (1.4)

which should satisfy ǫ, |η| ≪ 1, the spectra can be computed using the
slow-roll approximation as

∆2
R (k) ≃

8

3m4
Pl

V

ǫ

∣

∣

∣

∣

∣

k=aH

; ∆2
grav (k) ≃

128

3m4
Pl

V

∣

∣

∣

∣

∣

k=aH

. (1.5)

In each case, the expressions on the right-hand side are to be evaluated
when the scale k is equal to the Hubble radius during inflation. The
symbol ‘≃’ here indicates use of the slow-roll approximation, which is
expected to be accurate to a few percent or better.
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4 1. The Cosmological Parameters

From these expressions, we can compute the spectral indices

n ≃ 1 − 6ǫ + 2η ; ngrav ≃ −2ǫ . (1.6)

Another useful quantity is the ratio of the two spectra, defined by

r ≡
∆2

grav (k∗)

∆2
R (k∗)

. (1.7)

This convention matches that used by WMAP [2] (there are some
alternative historical definitions which lead to a slightly different
prefactor in the following equation). We have

r ≃ 16ǫ ≃ −8ngrav , (1.8)

which is known as the consistency equation.

In general, one could consider corrections to the power-law
approximation, which we discuss later. However, for now we make
the working assumption that the spectra can be approximated by
power laws. The consistency equation shows that r and ngrav are not
independent parameters, and so the simplest inflation models give
initial conditions described by three parameters, usually taken as ∆2

R,
n, and r, all to be evaluated at some scale k∗, usually the ‘statistical
center’ of the range explored by the data. Alternatively, one could
use the parametrization V , ǫ, and η, all evaluated at a point on the
putative inflationary potential.

After the perturbations are created in the early Universe, they
undergo a complex evolution up until the time they are observed
in the present Universe. While the perturbations are small, this
can be accurately followed using a linear theory numerical code
such as CMBFAST or CAMB [8]. This works right up to the
present for the CMB, but for density perturbations on small scales
non-linear evolution is important and can be addressed by a variety
of semi-analytical and numerical techniques. However the analysis is
made, the outcome of the evolution is in principle determined by
the cosmological model, and by the parameters describing the initial
perturbations, and hence can be used to determine them.

Of particular interest are CMB anisotropies. Both the total
intensity and two independent polarization modes are predicted to
have anisotropies. These can be described by the radiation angular
power spectra Cℓ as defined in the article of Scott and Smoot in
this volume, and again provide a complete description if the density
perturbations are Gaussian.

1.1.4. The standard cosmological model:

We now have most of the ingredients in place to describe the
cosmological model. Beyond those of the previous subsections, there
are two parameters which are essential: a measure of the ionization
state of the Universe and the galaxy bias parameter. The Universe is
known to be highly ionized at low redshifts (otherwise radiation from
distant quasars would be heavily absorbed in the ultra-violet), and the
ionized electrons can scatter microwave photons altering the pattern
of observed anisotropies. The most convenient parameter to describe
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1. The Cosmological Parameters 5

this is the optical depth to scattering τ (i.e., the probability that a
given photon scatters once); in the approximation of instantaneous
and complete reionization, this could equivalently be described by
the redshift of reionization zion. The bias parameter, described fully
later, is needed to relate the observed galaxy power spectrum to the
predicted dark matter power spectrum. The basic set of cosmological
parameters is therefore as shown in Table 1.1. The spatial curvature
does not appear in the list, because it can be determined from the
other parameters using Eq. (1.1) (and is assumed zero for the observed
values shown). The total present matter density Ωm = Ωcdm + Ωb is
sometimes used in place of the dark matter density.

Table 1.1: The basic set of cosmological parameters. We give
values (with some additional rounding) as obtained using a fit
of a spatially-flat ΛCDM cosmology with a power-law initial
spectrum to WMAP7 data alone: Table 10, left column of
Ref. 2. Tensors are assumed zero except in quoting a limit on
them. The exact values and uncertainties depend on both the
precise data-sets used and the choice of parameters allowed
to vary. Limits on ΩΛ and h weaken if the Universe is not
assumed flat. The density perturbation amplitude is specified
by the derived parameter σ8. Uncertainties are one-sigma/68%
confidence unless otherwise stated.

Parameter Symbol Value

Hubble parameter h 0.704 ± 0.025
Cold dark matter density Ωcdm Ωcdmh2 = 0.112 ± 0.006
Baryon density Ωb Ωbh2 = 0.0225± 0.0006
Cosmological constant ΩΛ 0.73 ± 0.03
Radiation density Ωr Ωrh

2 = 2.47 × 10−5

Neutrino density Ων See Sec. 1.1.2
Density perturb. amplitude at k = 0.002Mpc−1 ∆2

R (2.43 ± 0.11)× 10−9

Density perturb. spectral index n 0.967 ± 0.014
Tensor to scalar ratio r r < 0.36 (95% conf.)
Ionization optical depth τ 0.088 ± 0.015
Bias parameter b See Sec. 21.3.4

Most attention to date has been on parameter estimation, where a
set of parameters is chosen by hand and the aim is to constrain them.
Interest has been growing towards the higher-level inference problem
of model selection, which compares different choices of parameter sets.
Bayesian inference offers an attractive framework for cosmological
model selection, setting a tension between model predictiveness and
ability to fit the data.

As described in Sec. 1.4, models based on these eleven parameters
are able to give a good fit to the complete set of high-quality data
available at present, and indeed some simplification is possible.
Observations are consistent with spatial flatness, and indeed the
inflation models so far described automatically generate negligible
spatial curvature, so we can set k = 0; the density parameters then
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6 1. The Cosmological Parameters

must sum to unity, and so one can be eliminated. The neutrino
energy density is often not taken as an independent parameter.
Provided the neutrino sector has the standard interactions, the
neutrino energy density, while relativistic, can be related to the
photon density using thermal physics arguments, and it is currently
difficult to see the effect of the neutrino mass, although observations
of large-scale structure have already placed interesting upper limits.
This reduces the standard parameter set to nine. In addition, there
is no observational evidence for the existence of tensor perturbations
(though the upper limits are fairly weak), and so r could be set to zero.
Presently n is in a somewhat uncertain position regarding whether it
needs to be varied in a fit, or can be set to the Harrison–Zel’dovich
value n = 1. Parameter estimation [3] indicates n = 1 is disfavoured
at over 2-σ, but Bayesian model selection techniques [9] suggest
the data is not conclusive. With n set to one, this leaves seven
parameters, which is the smallest set that can usefully be compared
to the present cosmological data set. This model (usually with n kept
as a parameter) is referred to by various names, including ΛCDM, the
concordance cosmology, and the standard cosmological model.

Of these parameters, only Ωr is accurately measured directly. The
radiation density is dominated by the energy in the CMB, and the
COBE satellite FIRAS experiment determined its temperature to be
T = 2.7255± 0.0006K [10], corresponding to Ωr = 2.47× 10−5h−2. It
typically need not be varied in fitting other data. If galaxy clustering
data are not included in a fit, then the bias parameter is also
unnecessary.

In addition to this minimal set, there is a range of other parameters
which might prove important in future as the data-sets further
improve, but for which there is so far no direct evidence, allowing
them to be set to a specific value for now. We discuss various
speculative options in the next section. For completeness at this point,
we mention one other interesting parameter, the helium fraction,
which is a non-zero parameter that can affect the CMB anisotropies at
a subtle level. Presently, BBN provides the best measurement of this
parameter (see the Fields and Sarkar article in this volume), and it is
usually fixed in microwave anisotropy studies, but the data are just
reaching a level where allowing its variation may become mandatory.

1.1.5. Derived parameters:

The parameter list of the previous subsection is sufficient to give
a complete description of cosmological models which agree with
observational data. However, it is not a unique parametrization,
and one could instead use parameters derived from that basic set.
Parameters which can be obtained from the set given above include the
age of the Universe, the present horizon distance, the present neutrino
background temperature, the epoch of matter–radiation equality, the
epochs of recombination and decoupling, the epoch of transition to
an accelerating Universe, the baryon-to-photon ratio, and the baryon
to dark matter density ratio. In addition, the physical densities of
the matter components, Ωih

2, are often more useful than the density
parameters. The density perturbation amplitude can be specified in
many different ways other than the large-scale primordial amplitude,
for instance, in terms of its effect on the CMB, or by specifying a
short-scale quantity, a common choice being the present linear-theory

July 27, 2012 16:13



1. The Cosmological Parameters 7

mass dispersion on a scale of 8 h−1Mpc, known as σ8, whose WMAP7
value is 0.81 ± 0.03 [2].

Different types of observation are sensitive to different subsets of
the full cosmological parameter set, and some are more naturally
interpreted in terms of some of the derived parameters of this
subsection than on the original base parameter set. In particular,
most types of observation feature degeneracies whereby they are
unable to separate the effects of simultaneously varying several of the
base parameters.

1.2. Extensions to the standard model

This section discusses some ways in which the standard model could
be extended. At present, there is no positive evidence in favor of any
of these possibilities, which are becoming increasingly constrained by
the data, though there always remains the possibility of trace effects
at a level below present observational capability.

1.2.1. More general perturbations:

The standard cosmology assumes adiabatic, Gaussian perturbations.
Adiabaticity means that all types of material in the Universe share a
common perturbation, so that if the space-time is foliated by constant-
density hypersurfaces, then all fluids and fields are homogeneous
on those slices, with the perturbations completely described by the
variation of the spatial curvature of the slices. Gaussianity means
that the initial perturbations obey Gaussian statistics, with the
amplitudes of waves of different wavenumbers being randomly drawn
from a Gaussian distribution of width given by the power spectrum.
Note that gravitational instability generates non-Gaussianity; in this
context, Gaussianity refers to a property of the initial perturbations,
before they evolve significantly.

The simplest inflation models, based on one dynamical field, predict
adiabatic perturbations and a level of non-Gaussianity which is too
small to be detected by any experiment so far conceived. For present
data, the primordial spectra are usually assumed to be power laws.

1.2.1.1. Non-power-law spectra:

For typical inflation models, it is an approximation to take the
spectra as power laws, albeit usually a good one. As data quality
improves, one might expect this approximation to come under
pressure, requiring a more accurate description of the initial spectra,
particularly for the density perturbations. In general, one can expand
ln∆2

R as

ln∆2
R (k) = ln∆2

R (k∗)+(n∗ − 1) ln
k

k∗
+

1

2

dn

d ln k

∣

∣

∣

∣

∗

ln2 k

k∗
+· · · , (1.9)

where the coefficients are all evaluated at some scale k∗. The term
dn/d ln k|∗ is often called the running of the spectral index [11]. Once
non-power-law spectra are allowed, it is necessary to specify the scale
k∗ at which the spectral index is defined.
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8 1. The Cosmological Parameters

1.2.1.2. Isocurvature perturbations:

An isocurvature perturbation is one which leaves the total density
unperturbed, while perturbing the relative amounts of different
materials. If the Universe contains N fluids, there is one growing
adiabatic mode and N − 1 growing isocurvature modes (for reviews
see Ref. 12 and Ref. 7). These can be excited, for example, in
inflationary models where there are two or more fields which acquire
dynamically-important perturbations. If one field decays to form
normal matter, while the second survives to become the dark matter,
this will generate a cold dark matter isocurvature perturbation.

In general, there are also correlations between the different modes,
and so the full set of perturbations is described by a matrix giving the
spectra and their correlations. Constraining such a general construct
is challenging, though constraints on individual modes are beginning
to become meaningful, with no evidence that any other than the
adiabatic mode must be non-zero.

1.2.1.3. Seeded perturbations:

An alternative to laying down perturbations at very early epochs
is that they are seeded throughout cosmic history, for instance
by topological defects such as cosmic strings. It has long been
excluded that these are the sole original of structure, but they
could contribute part of the perturbation signal, current limits being
approximately ten percent [13]. In particular, cosmic defects formed
in a phase transition ending inflation is a plausible scenario for such a
contribution.

1.2.1.4. Non-Gaussianity:

Multi-field inflation models can also generate primordial non-
Gaussianity (reviewed, e.g., in Ref. 7). The extra fields can either
be in the same sector of the underlying theory as the inflaton, or
completely separate, an interesting example of the latter being the
curvaton model [14]. Current upper limits on non-Gaussianity are
becoming stringent, but there remains much scope to push down
those limits and perhaps reveal trace non-Gaussianity in the data.
If non-Gaussianity is observed, its nature may favor an inflationary
origin, or a different one such as topological defects.

1.2.2. Dark matter properties:

Dark matter properties are discussed in the article by Drees and
Gerbier in this volume. The simplest assumption concerning the dark
matter is that it has no significant interactions with other matter,
and that its particles have a negligible velocity as far as structure
formation is concerned. Such dark matter is described as ‘cold,’ and
candidates include the lightest supersymmetric particle, the axion,
and primordial black holes. As far as astrophysicists are concerned, a
complete specification of the relevant cold dark matter properties is
given by the density parameter Ωcdm, though those seeking to directly
detect it are as interested in its interaction properties.

Cold dark matter is the standard assumption and gives an excellent
fit to observations, except possibly on the shortest scales where
there remains some controversy concerning the structure of dwarf
galaxies and possible substructure in galaxy halos. It has long been
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1. The Cosmological Parameters 9

excluded for all the dark matter to have a large velocity dispersion,
so-called ‘hot’ dark matter, as it does not permit galaxies to form;
for thermal relics the mass must be below about 1 keV to satisfy this
constraint, though relics produced non-thermally, such as the axion,
need not obey this limit. However, in future further parameters might
need to be introduced to describe dark matter properties relevant to
astrophysical observations. Suggestions which have been made include
a modest velocity dispersion (warm dark matter) and dark matter
self-interactions. There remains the possibility that the dark matter
comprises two separate components, e.g., a cold one and a hot one, an
example being if massive neutrinos have a non-negligible effect.

1.2.3. Dark energy:

While the standard cosmological model given above features a
cosmological constant, in order to explain observations indicating that
the Universe is presently accelerating, further possibilities exist under
the general heading ‘dark energy’.† One possibility, usually called
quintessence, is that a scalar field is responsible, with the mechanism
mimicking that of early Universe inflation [15]. As described by Olive
and Peacock, a fairly model-independent description of dark energy
can be given using the equation of state parameter w, with w = −1
corresponding to a cosmological constant and w potentially varying
with redshift. For high-precision predictions of CMB anisotropies, the
scalar-field description has the advantage of a self-consistent evolution
of the ‘sound speed’ associated with the dark energy perturbations.

A competing possibility is that the observed acceleration is due to
a modification of gravity, i.e., the left-hand side of Einstein’s equation
rather than the right (for a review see Ref. 16). Observations of
expansion kinematics alone cannot distinguish these two possibilities,
but probes of the growth rate of structure formation may be able
to. It is possible that certain modified theories of gravity could
explain the late-time acceleration of the Universe without recourse
to any dark energy or cosmological constant. In a ‘Newtonian’
gauge the perturbed metric can be written with two potentials.
Non-relativistic particles only respond to the temporal one, essentially
the Newtonian potential, while relativistic particles, e.g., photons,
respond to the full metric in the form of the sum of the two potentials.
In standard general relativity the two potentials are the same (in
absence of anisotropic stress). Measurements of redshift distortions
from spectroscopic surveys and weak lensing from imaging surveys
can in principle distinguish between the Dark Energy and Modified
Gravity alternatives (e.g., Ref. 17).

While present observations are consistent with a cosmological
constant, to test dark energy models w must be varied. The most
popular option is w(a) = w0 + (1 − a)wa with w0 and wa constants to
be determined [18]. Additionally the weak energy condition w ≥ −1
may be imposed. Future data may require a more sophisticated
parametrization of the dark energy, including its sound speed which
influences structure formation.

† It is actually the negative pressure of this material, not its energy,
that is responsible for giving the acceleration. Furthermore, while gen-
erally in physics matter and energy are interchangeable terms, dark
matter and dark energy are quite distinct concepts.
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10 1. The Cosmological Parameters

1.2.4. Complex ionization history:

The full ionization history of the Universe is given by the ionization
fraction as a function of redshift z. The simplest scenario takes the
ionization to have the small residual value left after recombination
up to some redshift zion, at which point the Universe instantaneously
reionizes completely. Then there is a one-to-one correspondence
between τ and zion (that relation, however, also depending on other
cosmological parameters). An accurate treatment of this process will
track separate histories for hydrogen and helium. While currently
rapid ionization appears to be a good approximation, as data improve
a more complex ionization history may need to be considered.

1.2.5. Varying ‘constants’:

Variation of the fundamental constants of Nature over cosmological
times is another possible enhancement of the standard cosmology.
There is a long history of study of variation of the gravitational
constant G, and more recently attention has been drawn to the
possibility of small fractional variations in the fine-structure constant.
There is presently no observational evidence for the former, which
is tightly constrained by a variety of measurements. Evidence for
the latter has been claimed from studies of spectral line shifts in
quasar spectra at redshifts of order two [19], but this is presently
controversial and in need of further observational study.

1.2.6. Cosmic topology:

The usual hypothesis is that the Universe has the simplest topology
consistent with its geometry, for example that a flat Universe extends
forever. Observations cannot tell us whether that is true, but they
can test the possibility of a non-trivial topology on scales up to
roughly the present Hubble scale. Extra parameters would be needed
to specify both the type and scale of the topology, for example, a
cuboidal topology would need specification of the three principal axis
lengths. At present, there is no direct evidence for cosmic topology,
though the low values of the observed cosmic microwave quadrupole
and octupole have been cited as a possible signature [20].

1.3. Probes

The goal of the observational cosmologist is to utilize astronomical
information to derive cosmological parameters. The transformation
from the observables to the key parameters usually involves many
assumptions about the nature of the objects, as well as about the
nature of the dark matter. Below we outline the physical processes
involved in each probe, and the main recent results. The first two
subsections concern probes of the homogeneous Universe, while the
remainder consider constraints from perturbations.

In addition to statistical uncertainties we note three sources
of systematic uncertainties that will apply to the cosmological
parameters of interest: (i) due to the assumptions on the cosmological
model and its priors (i.e., the number of assumed cosmological
parameters and their allowed range); (ii) due to the uncertainty in
the astrophysics of the objects (e.g., light curve fitting for supernovae
or the mass–temperature relation of galaxy clusters); and (iii) due to
instrumental and observational limitations (e.g., the effect of ‘seeing’
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1. The Cosmological Parameters 11

on weak gravitational lensing measurements, or beam shape on CMB
anisotropy measurements).

1.3.1. Direct measures of the Hubble constant:

In 1929, Edwin Hubble discovered the law of expansion of the
Universe by measuring distances to nearby galaxies. The slope of
the relation between the distance and recession velocity is defined to
be the Hubble constant H0. Astronomers argued for decades on the
systematic uncertainties in various methods and derived values over
the wide range, 40 kms−1 Mpc−1 <

∼ H0
<
∼ 100 kms−1 Mpc−1.

One of the most reliable results on the Hubble constant comes
from the Hubble Space Telescope Key Project [21]. This study
used the empirical period–luminosity relations for Cepheid variable
stars to obtain distances to 31 galaxies, and calibrated a number
of secondary distance indicators—Type Ia Supernovae (SNe Ia),
the Tully–Fisher relation, surface-brightness fluctuations, and Type
II Supernovae—measured over distances of 400 to 600 Mpc. They
estimated H0 = 72 ± 3 (statistical) ± 7 (systematic) km s−1 Mpc−1.‡

A recent study [22] of over 600 Cepheids in the host galaxies of
eight recent SNe Ia, observed with an improved camera on board
the Hubble Space Telescope, was used to calibrate the magnitude–
redshift relation for 240 SNe Ia. This yielded an even more accurate
figure, H0 = 73.8 ± 2.4 kms−1 Mpc−1 (including both statistical and
systematic errors). The major sources of uncertainty in this result are
due to the heavy element abundance of the Cepheids and the distance
to the fiducial nearby galaxy, the Large Magellanic Cloud, relative
to which all Cepheid distances are measured. It is impressive that
this result is in such good agreement with the result derived from
the WMAP CMB measurements combined with other probes (see
Table 21.2).

1.3.2. Supernovae as cosmological probes:

The relation between observed flux and the intrinsic luminosity
of an object depends on the luminosity distance DL, which in turn
depends on cosmological parameters:

DL = (1 + z) re (z) , (1.10)

where re(z) is the coordinate distance. For example, in a flat Universe

re (z) =

∫ z

0

dz′

H (z′)
. (1.11)

For a general dark energy equation of state w(z) = pde(z)/ρde(z), the
Hubble parameter is, still considering only the flat case,

H2 (z)

H2
0

= (1 + z)3 Ωm + Ωde exp [3X (z)] , (1.12)

‡ Unless stated otherwise, all quoted uncertainties in this article
are one-sigma/68% confidence. Cosmological parameters often have
significantly non-Gaussian uncertainties. Throughout we have rounded
central values, and especially uncertainties, from original sources in
cases where they appear to be given to excessive precision.
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12 1. The Cosmological Parameters

where

X (z) =

∫ z

0

[

1 + w
(

z′
)] (

1 + z′
)−1

dz′ , (1.13)

and Ωde is the present density parameter of the dark energy
component. If a general equation of state is allowed, then one has to
solve for w(z) (parametrized, for example, as w(z) = w = const., or
w(z) = w0 + w1z) as well as for Ωde.

Empirically, the peak luminosity of SNe Ia can be used as an
efficient distance indicator (e.g., Ref. 23). The favorite theoretical
explanation for SNe Ia is the thermonuclear disruption of carbon–
oxygen white dwarfs. Although not perfect ‘standard candles,’ it has
been demonstrated that by correcting for a relation between the light
curve shape, color, and the luminosity at maximum brightness, the
dispersion of the measured luminosities can be greatly reduced. There
are several possible systematic effects which may affect the accuracy
of the use of SNe Ia as distance indicators, e.g., evolution with redshift
and interstellar extinction in the host galaxy and in the Milky Way.

Two major studies, the Supernova Cosmology Project and the
High-z Supernova Search Team, found evidence for an accelerating
Universe [24], interpreted as due to a cosmological constant or
a dark energy component. Representative results from the ‘Union
sample’ [25] of over 300 SNe Ia are shown in Fig. 1.1 (see also
further results in Ref. 26). When combined with the CMB data
(which indicates flatness, i.e., Ωm + ΩΛ ≈ 1), the best-fit values are
Ωm ≈ 0.3 and ΩΛ ≈ 0.7. Most results in the literature are consistent
with the w = −1 cosmological constant case. As an example of recent
results, the SNLS3 team found, for a constant equation of state
parameter, w = −0.91+0.16

−0.20 (stat.)+0.07
−0.14 (sys.) [27]. This includes a

correction for the recently-discovered relationship between host galaxy
mass and supernova absolute brightness. This agrees with earlier
results [25,28]. Future experiments will aim to set constraints on
the cosmic equation of state w(z), though given the integral relation
between the luminosity distance and w(z) it is not straightforward to
recover w(z) (e.g., Ref. 29).

1.3.3. Cosmic microwave background:

The physics of the CMB is described in detail by Scott and
Smoot in this volume. Before recombination, the baryons and photons
are tightly coupled, and the perturbations oscillate in the potential
wells generated primarily by the dark matter perturbations. After
decoupling, the baryons are free to collapse into those potential
wells. The CMB carries a record of conditions at the time of last
scattering, often called primary anisotropies. In addition, it is affected
by various processes as it propagates towards us, including the effect
of a time-varying gravitational potential (the integrated Sachs–Wolfe
effect), gravitational lensing, and scattering from ionized gas at low
redshift.

The primary anisotropies, the integrated Sachs-Wolfe effect, and
scattering from a homogeneous distribution of ionized gas, can all be
calculated using linear perturbation theory. Available codes include
CMBFAST and CAMB [8], the latter widely used embedded within
the analysis package CosmoMC [30]. Gravitational lensing is also
calculated in these codes. Secondary effects such as inhomogeneities in
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Figure 1.1: Confidence level contours of 68.3%, 95.4% and
99.7% in the ΩΛ–Ωm plane from the CMB, BAOs and the Union
SNe Ia set, as well as their combination (assuming w = −1).
[Courtesy of Kowalski et al. [25]]

the reionization process, and scattering from gravitationally-collapsed
gas (the Sunyaev–Zel’dovich effect), require more complicated, and
more uncertain, calculations.

The upshot is that the detailed pattern of anisotropies depends
on all of the cosmological parameters. In a typical cosmology, the
anisotropy power spectrum [usually plotted as ℓ(ℓ + 1)Cℓ] features
a flat plateau at large angular scales (small ℓ), followed by a series
of oscillatory features at higher angular scales, the first and most
prominent being at around one degree (ℓ ≃ 200). These features,
known as acoustic peaks, represent the oscillations of the photon–
baryon fluid around the time of decoupling. Some features can be
closely related to specific parameters—for instance, the location of
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14 1. The Cosmological Parameters

Figure 1.2: The angular power spectrum of the CMB
temperature anisotropies from WMAP7, from Ref. 2. The grey
band indicates the cosmic variance uncertainty. The solid line
shows the prediction from the best-fitting ΛCDM model. [Figure
courtesy NASA/WMAP Science Team.]

the first peak probes the spatial geometry, while the relative heights
of the peaks probes the baryon density—but many other parameters
combine to determine the overall shape.

The seven-year data release from the WMAP satellite [1],
henceforth WMAP7, has provided the most powerful results to date
on the spectrum of CMB anisotropies, with a precision determination
of the temperature power spectrum up to ℓ ≃ 900, shown in Fig. 1.2,
as well as measurements of the spectrum of E-polarization anisotropies
and the correlation spectrum between temperature and polarization
(those spectra having first been detected by DASI [31]) . These are
consistent with models based on the parameters we have described,
and provide accurate determinations of many of those parameters [2].

WMAP7 provides an exquisite measurement of the location of the
first acoustic peak, determining the angular-diameter distance of the
last-scattering surface. In combination with other data this strongly
constrains the spatial geometry, in a manner consistent with spatial
flatness and excluding significantly-curved Universes. WMAP7 also
gives a precision measurement of the age of the Universe. It gives a
baryon density consistent with, and at higher precision than, that
coming from BBN. It affirms the need for both dark matter and
dark energy. It shows no evidence for dynamics of the dark energy,
being consistent with a pure cosmological constant (w = −1). The
density perturbations are consistent with a power-law primordial
spectrum, with indications that the spectral slope may be less than
the Harrison–Zel’dovich value n = 1 [2]. There is no indication of
tensor perturbations, but the upper limit is quite weak. WMAP7’s
current best-fit for the reionization optical depth, τ = 0.088, is in
reasonable agreement with models of how early structure formation
induces reionization.
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WMAP7 is consistent with other experiments and its dynamic range
can be enhanced by including information from small-angle CMB
experiments such as ACBAR, QUaD, the South Pole Telescope (SPT),
and the Atacama Cosmology Telescope (ACT), which gives extra
constraining power on some parameters. ACT has also announced the
first detection of gravitational lensing of the CMB from the four-point
correlation of temperature variations [32], agreeing with the expected
effect in the standard cosmology.

1.3.4. Galaxy clustering:

The power spectrum of density perturbations depends on the
nature of the dark matter. Within the ΛCDM model, the power
spectrum shape depends primarily on the primordial power spectrum
and on the combination Ωmh which determines the horizon scale at
matter–radiation equality, with a subdominant dependence on the
baryon density.

The matter distribution is most easily probed by observing the
galaxy distribution, but this must be done with care as the galaxies
do not perfectly trace the dark matter distribution. Rather, they
are a ‘biased’ tracer of the dark matter. The need to allow for such
bias is emphasized by the observation that different types of galaxies
show bias with respect to each other. In particular scale-dependent
and stochastic biasing may introduce a systematic effect on the
determination of cosmological parameters from redshift surveys. Prior
knowledge from simulations of galaxy formation or from gravitational
lensing data could help to quantify biasing. Furthermore, the observed
3D galaxy distribution is in redshift space, i.e., the observed redshift
is the sum of the Hubble expansion and the line-of-sight peculiar
velocity, leading to linear and non-linear dynamical effects which also
depend on the cosmological parameters. On the largest length scales,
the galaxies are expected to trace the location of the dark matter,
except for a constant multiplier b to the power spectrum, known as the
linear bias parameter. On scales smaller than 20 h−1 Mpc or so, the
clustering pattern is ‘squashed’ in the radial direction due to coherent
infall, which depends approximately on the parameter β ≡ Ω0.6

m /b
(on these shorter scales, more complicated forms of biasing are not
excluded by the data). On scales of a few h−1 Mpc, there is an effect
of elongation along the line of sight (colloquially known as the ‘finger
of God’ effect) which depends on the galaxy velocity dispersion.

1.3.4.1. Baryonic Acoustic Oscillations (BAOs):

The Fourier power spectra of the 2-degree Field (2dF) Galaxy
Redshift Survey and the Sloan Digital Sky Survey (SDSS) are
well fitted by a ΛCDM model and both surveys show evidence for
BAOs [33,34]. Further analyses used the Luminous Red Galaxies
(LRGs) in the SDSS 7th Data Release [35], shown in Fig. 1.3.
Combining the so-called ‘halo’ power spectrum measurement with the
then-current WMAP5 results, for the flat ΛCDM model they find
Ωm = 0.289±0.019 and H0 = 69.4±1.6 km s−1 Mpc−1. A new survey,
WiggleZ, combined with the 6dF and SDSS-LRG surveys, CMB and
SNIa data, yields a constant equation of state w = −1.03 ± 0.08 for
a flat universe, consistent with a cosmological constant. However,
allowing for epoch-dependent w(a) = w0 + (1 − a)wa they find
that the uncertainties are much larger, w0 = −1.09 ± 0.17 and
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16 1. The Cosmological Parameters

Figure 1.3: The galaxy power spectrum from the SDSS LRGs.
The best-fit LRG+WMAP ΛCDM model is shown for two sets
of nuisance parameters (solid and dashed lines). The BAO inset
shows the same data and model divided by a spline fit to the
smooth component. [Figure courtesy B. Reid/W. Percival; see
Ref. 35.]

wa = 0.19 ± 0.69 [36]. Further BAO results are expected from the
BOSS survey.

1.3.4.2. Integrated Sachs–Wolfe effect:

The integrated Sachs–Wolfe (ISW) effect, described in the article
by Scott and Smoot, is the change in CMB photon energy when
propagating through the changing gravitational potential wells
of developing cosmic structures. In linear theory, the ISW signal is
expected in universes where there is dark energy, curvature or modified
gravity. Correlating the large-angle CMB anisotropies with very large
scale structures, first proposed in Ref. 37, has provided results which
vary from no detection of this effect to 4σ detection [38,39].
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1.3.4.3. Limits on neutrino mass from galaxy surveys and other
probes:

Large-scale structure data can put an upper limit on Ων due
to the neutrino ‘free streaming’ effect [40–43]. Upper limits on
neutrino mass are commonly estimated by comparing the observed
galaxy power spectrum with a four-component model of baryons,
cold dark matter, a cosmological constant, and massive neutrinos.
Such analyses also assume that the primordial power spectrum is
adiabatic, scale-invariant, and Gaussian. Potential systematic effects
include biasing of the galaxy distribution and non-linearities of the
power spectrum. An upper limit can also be derived from CMB
anisotropies alone, but it is typically not below 2 eV [44]. Additional
cosmological data sets can improve the results. Recent results using a
photometric redshift sample of LRGs combined with WMAP, BAO,
Hubble constant and SNe Ia data brought the upper limit on the
total neutrino mass down to 0.28 eV [45], with a similar result for a
combination of other data sets [46]. As the lower limit on neutrino
mass from terrestrial experiments is 0.05 eV, it looks promising that
cosmological surveys will detect the neutrino mass. Another probe of
neutrino mass is the intergalactic medium, which manifests itself in
quasar absorption lines (the Lyman-α forest), yielding from the SDSS
flux power spectrum an upper limit of 0.9 eV (95% confidence) [47].

1.3.5. Clusters of galaxies:

A cluster of galaxies is a large collection of galaxies held together by
their mutual gravitational attraction. The largest ones are around 1015

Solar masses, and are the largest gravitationally-collapsed structures
in the Universe. Even at the present epoch they are relatively rare,
with only a few percent of galaxies being in clusters. They provide
various ways to study the cosmological parameters.

The first objects of a given kind form at the rare high peaks of the
density distribution, and if the primordial density perturbations are
Gaussian distributed, their number density is exponentially sensitive
to the size of the perturbations, and hence can strongly constrain it.
Clusters are an ideal application in the present Universe. They are
usually used to constrain the amplitude σ8, as a box of side 8 h−1 Mpc
contains about the right amount of material to form a cluster. The
most useful observations at present are of X-ray emission from hot
gas lying within the cluster, whose temperature is typically a few
keV, and which can be used to estimate the mass of the cluster. A
theoretical prediction for the mass function of clusters can come either
from semi-analytic arguments or from numerical simulations. The
same approach can be adopted at high redshift (which for clusters
means redshifts of order one) to attempt to measure σ8 at an earlier
epoch. The evolution of σ8 is primarily driven by the value of the
matter density Ωm, with a sub-dominant dependence on the dark
energy properties.

At present, the main uncertainty is the relation between the
observed gas temperature and the cluster mass, despite extensive
study using simulations. Mantz et al. [48] used a large sample of
X-ray selected clusters to find σ8 = 0.82± 0.05, Ωm = 0.23± 0.04, and
w = −1.01± 0.20 for a constant dark energy equation of state w. This
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agrees well with the values predicted in cosmologies compatible with
WMAP7.

A further use of clusters is to measure the ratio of baryon to
dark matter mass, through modelling of the way the hot cluster
gas is confined by the total gravitational potential. Allen et al. [49]
give examples of constraints that can be obtained this way on both
dark matter and dark energy using Chandra data across a range of
redshifts.

1.3.6. Clustering in the inter-galactic medium:

It is commonly assumed, based on hydrodynamic simulations, that
the neutral hydrogen in the inter-galactic medium (IGM) can be
related to the underlying mass distribution. It is then possible to
estimate the matter power spectrum on scales of a few megaparsecs
from the absorption observed in quasar spectra, the so-called Lyman-α
forest. The usual procedure is to measure the power spectrum of
the transmitted flux, and then to infer the mass power spectrum.
Photo-ionization heating by the ultraviolet background radiation and
adiabatic cooling by the expansion of the Universe combine to give a
simple power-law relation between the gas temperature and the baryon
density. It also follows that there is a power-law relation between the
optical depth τ and ρb. Therefore, the observed flux F = exp(−τ) is
strongly correlated with ρb, which itself traces the mass density. The
matter and flux power spectra can be related by

Pm (k) = b2 (k) PF (k) , (1.14)

where b(k) is a bias function which is calibrated from simulations.
Croft et al. [50] derived cosmological parameters from Keck Telescope
observations of the Lyman-α forest at redshifts z = 2 to 4. Their
derived power spectrum corresponds to that of a CDM model, which
is in good agreement with the 2dF galaxy power spectrum. A recent
study using VLT spectra [51] agrees with the flux power spectrum
of Ref. 50. This method depends on various assumptions. Seljak
et al. [52] pointed out that uncertainties are sensitive to the range
of cosmological parameters explored in the simulations, and the
treatment of the mean transmitted flux. Nevertheless, this method
has the potential of measuring accurately the power spectrum of mass
perturbations in a different way to other methods.

1.3.7. Gravitational lensing:

Images of background galaxies are distorted by the gravitational
effect of mass variations along the line of sight. Deep gravitational
potential wells such as galaxy clusters generate ‘strong lensing’,
leading to arcs, arclets and multiple images, while more moderate
perturbations give rise to ‘weak lensing’. Weak lensing is now widely
used to measure the mass power spectrum in selected regions of
the sky (see Ref. 53 for recent reviews). As the signal is weak, the
image of deformed galaxy shapes (the ‘shear map’) must be analyzed
statistically to measure the power spectrum, higher moments, and
cosmological parameters.

The shear measurements are mainly sensitive to the combination
of Ωm and the amplitude σ8. For example, the weak lensing
signal detected by the CFHT Legacy Survey has been analyzed
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to yield σ8(Ωm/0.25)0.64 = 0.78 ± 0.04 [54] and σ8(Ωm/0.24)0.59 =
0.84 ± 0.05 [55] assuming a ΛCDM model. Earlier results are
summarized in Ref. 53. There are various systematic effects in the
interpretation of weak lensing, e.g., due to atmospheric distortions
during observations, the redshift distribution of the background
galaxies, the intrinsic correlation of galaxy shapes, and non-linear
modeling uncertainties.

1.3.8. Peculiar velocities:

Deviations from the Hubble flow directly probe the mass
perturbations in the Universe, and hence provide a powerful probe
of the dark matter [56]. Peculiar velocities are deduced from the
difference between the redshift and the distance of a galaxy. The
observational difficulty is in accurately measuring distances to galaxies.
Even the best distance indicators (e.g., the Tully–Fisher relation) give
an uncertainty of 15% per galaxy, hence limiting the application of
the method at large distances. Peculiar velocities are mainly sensitive
to Ωm, not to ΩΛ or dark energy. While at present cosmological
parameters derived from peculiar velocities are strongly affected by
random and systematic errors, a new generation of surveys may
improve their accuracy. Three promising approaches are the 6dF
near-infrared survey of 15,000 peculiar velocities, peculiar velocities of
SNe Ia, and the kinematic Sunyaev–Zel’dovich effect.

There is also a renewed interest in ‘redshift distortion’. As the
measured redshift of a galaxy is the sum of its redshift due to the
Hubble expansion and its peculiar velocity, this distortion depends
on cosmological parameters [57] via the perturbation growth rate
f(z) = d ln δ/d ln a ≈ Ωγ(z), where γ = 0.55 for a concordance
ΛCDM model, and is different for a modified gravity model. Recent
observational results [58,59] show that by measuring f(z) with redshift
it is feasible to constrain γ and rule out certain modified gravity
models.

1.4. Bringing observations together

Although it contains two ingredients—dark matter and dark
energy—which have not yet been verified by laboratory experiments,
the ΛCDM model is almost universally accepted by cosmologists
as the best description of the present data. The basic ingredients
are given by the parameters listed in Sec. 1.1.4, with approximate
values of some of the key parameters being Ωb ≈ 0.05, Ωcdm ≈ 0.23,
ΩΛ ≈ 0.72, and a Hubble constant h ≈ 0.70. The spatial geometry is
very close to flat (and usually assumed to be precisely flat), and the
initial perturbations Gaussian, adiabatic, and nearly scale-invariant.

The most powerful single experiment is WMAP7, which on its
own supports all these main tenets. Values for some parameters, as
given in Larson et al. [2] and Komatsu et al. [3], are reproduced
in Table 21.2. These particular results presume a flat Universe. The
constraints are somewhat strengthened by adding additional data-sets,
as shown in the Table, though most of the constraining power resides
in the WMAP7 data.

If the assumption of spatial flatness is lifted, it turns out that
WMAP7 on its own only weakly constrains the spatial curvature,
due to a parameter degeneracy in the angular-diameter distance.
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Table 1.2: Parameter constraints reproduced from Larson
et al. [2] and Komatsu et al. [3], with some additional rounding.
All columns assume the ΛCDM cosmology with a power-law
initial spectrum, no tensors, spatial flatness, and a cosmological
constant as dark energy. Above the line are the six parameter
combinations actually fit to the data; those below the line are
derived from these. Two different data combinations are shown
to highlight the extent to which this choice matters. The first
column is WMAP7 alone, while the second column shows a
combination of WMAP7 with BAO and H0 data as described in
Ref. 3. The perturbation amplitude ∆2

R is specified at the scale

0.002 Mpc−1. Uncertainties are shown at 68% confidence.

WMAP7 alone WMAP7 + BAO +H0

Ωbh2 0.0225± 0.0006 0.0226 ± 0.0005

Ωcdmh2 0.112 ± 0.006 0.113 ± 0.004

ΩΛ 0.73 ± 0.03 0.725 ± 0.016

n 0.967 ± 0.014 0.968 ± 0.012

τ 0.088 ± 0.015 0.088 ± 0.014

∆2
R × 109 2.43 ± 0.11 2.43 ± 0.09

h 0.704 ± 0.025 0.702 ± 0.014

σ8 0.81 ± 0.03 0.816 ± 0.024

Ωmh2 0.134 ± 0.006 0.135 ± 0.004

However inclusion of other data readily removes this, e.g., inclusion
of BAO and H0 data, plus the assumption that the dark energy is a
cosmological constant, yields a constraint on Ωtot ≡

∑

Ωi + ΩΛ of
Ωtot = 1.002 ± 0.011 [3]. Results of this type are normally taken as
justifying the restriction to flat cosmologies.

The baryon density Ωb is now measured with quite high accuracy
from the CMB and large-scale structure, and is consistent with the
determination from BBN; Fields and Sarkar in this volume quote the
range 0.019 ≤ Ωbh2 ≤ 0.024 (95% confidence).

While ΩΛ is measured to be non-zero with very high confidence,
there is no evidence of evolution of the dark energy density. The
WMAP team find the constraint w = −0.98 ± 0.05 on a constant
equation of state from a compilation of data including SNe Ia, with
the cosmological constant case w = −1 giving an excellent fit to the
data. Allowing more complicated forms of dark energy weakens the
limits.

The data provide strong support for the main predictions of the
simplest inflation models: spatial flatness and adiabatic, Gaussian,
nearly scale-invariant density perturbations. But it is disappointing
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that there is no sign of primordial gravitational waves, with WMAP7
alone providing only an upper limit r < 0.36 at 95% confidence [2]
(this assumes no running, weakening to 0.49 if running is allowed). The
spectral index n is placed in an interesting position, with indications
that n < 1 is required by the data. However, the confidence with
which n = 1 is ruled out is still rather weak, and in our view it is
premature to conclude that n = 1 is no longer viable.

Tests have been made for various types of non-Gaussianity, a
particular example being a parameter fNL which measures a quadratic
contribution to the perturbations. Various non-gaussianity shapes are
possible (see Ref. 3 for details), and current constraints on the popular
‘local’, ‘equilateral’, and ‘orthogonal’ types are −10 < f local

NL < 74,

−210 < f
equil
NL < 270, and −410 < f

orthog
NL < 6 at 95% confidence

(these look weak, but prominent non-Gaussianity requires the product
fNL∆R to be large, and ∆R is of order 10−5). There is presently no
secure indication of primordial non-gaussianity.

One parameter which is very robust is the age of the Universe, as
there is a useful coincidence that for a flat Universe the position of the
first peak is strongly correlated with the age. The WMAP7 result is
13.77 ± 0.13 Gyr (assuming flatness). This is in good agreement with
the ages of the oldest globular clusters and radioactive dating.

1.5. Outlook for the future

The concordance model is now well established, and there seems
little room left for any dramatic revision of this paradigm. A measure
of the strength of that statement is how difficult it has proven to
formulate convincing alternatives.

Should there indeed be no major revision of the current paradigm,
we can expect future developments to take one of two directions.
Either the existing parameter set will continue to prove sufficient
to explain the data, with the parameters subject to ever-tightening
constraints, or it will become necessary to deploy new parameters.
The latter outcome would be very much the more interesting, offering
a route towards understanding new physical processes relevant to
the cosmological evolution. There are many possibilities on offer for
striking discoveries, for example:

• The cosmological effects of a neutrino mass may be unambiguously
detected, shedding light on fundamental neutrino properties;

• Compelling detection of deviations from scale-invariance in the
initial perturbations would indicate dynamical processes during
perturbation generation by, for instance, inflation;

• Detection of primordial non-Gaussianities would indicate that
non-linear processes influence the perturbation generation
mechanism;

• Detection of variation in the dark-energy density (i.e., w 6= −1)
would provide much-needed experimental input into the nature of
the properties of the dark energy.

These provide more than enough motivation for continued efforts to
test the cosmological model and improve its accuracy.

Over the coming years, there are a wide range of new observations
which will bring further precision to cosmological studies. Indeed,
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there are far too many for us to be able to mention them all here, and
so we will just highlight a few areas.

The CMB observations will improve in several directions. A
current frontier is the study of polarization, first detected in 2002 by
DASI and for which power spectrum measurements have now been
made by several experiments. Future measurements may be able to
separately detect the two modes of polarization. Another area of
development is pushing accurate power spectrum measurements to
smaller angular scales, currently well underway with ACT and SPT.
Finally, we mention the Planck satellite, launched in 2009, which is
making high-precision all-sky maps of temperature and polarization,
utilizing a very wide frequency range to improve understanding of
foreground contaminants, and to compile a large sample of clusters
via the Sunyaev–Zel’dovich effect. Its main cosmological results will
be published in early 2013.

An impressive array of ground-based dark energy surveys are
also already operational, under construction, or proposed, including
ground-based imaging surveys the Dark Energy Survey, Pan-STARRS,
and LSST, spectroscopic surveys such as BigBOSS and DESpec, and
proposed space missions Euclid and WFIRST.

An exciting new area for the future will be radio surveys of the
redshifted 21-cm line of hydrogen. Because of the intrinsic narrowness
of this line, by tuning of the bandpass the emission from narrow
redshift slices of the Universe will be measured to extremely high
redshift, probing the details of the reionization process at redshifts up
to perhaps 20. LOFAR is the first instrument able to do this and is
at an advanced construction and commissioning stage. In the longer
term, the Square Kilometer Array (SKA) will take these studies to a
precision level.

The above future surveys will address fundamental questions of
physics well beyond just testing the ‘concordance’ ΛCDM model and
minor variations. By learning about both the geometry of the universe
and the growth of perturbations, it will be possible to test theories of
modified gravity and inhomogeneous universes.

The development of the first precision cosmological model is a
major achievement. However, it is important not to lose sight of
the motivation for developing such a model, which is to understand
the underlying physical processes at work governing the Universe’s
evolution. On that side, progress has been much less dramatic. For
instance, there are many proposals for the nature of the dark matter,
but no consensus as to which is correct. The nature of the dark energy
remains a mystery. Even the baryon density, now measured to an
accuracy of a few percent, lacks an underlying theory able to predict
it even within orders of magnitude. Precision cosmology may have
arrived, but at present many key questions remain to motivate and
challenge the cosmology community.

For further details and all references, see the full Review of Particle
Physics. See also “Astrophysical Constants,” table 2.1 in this Booklet.
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